Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 38(2): 312-318, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32394055

RESUMO

Ecological variability among closely related species provides an opportunity for evolutionary comparative studies. Therefore, to investigate the origin and evolution of neurotoxicity in Asian viperid snakes, we tested the venoms of Azemiops feae, Calloselasma rhodostoma, Deinagkistrodon acutus, Tropidolaeums subannulatus, and T. wagleri for their relative specificity and potency upon the amphibian, lizard, bird, rodent, and human α-1 (neuromuscular) nicotinic acetylcholine receptors. We utilised a biolayer interferometry assay to test the binding affinity of these pit viper venoms to orthosteric mimotopes of nicotinic acetylcholine receptors binding region from a diversity of potential prey types. The Tropidolaemus venoms were much more potent than the other species tested, which is consistent with the greater prey escape potential in arboreal niches. Intriguingly, the venom of C. rhodostoma showed neurotoxic binding to the α-1 mimotopes, a feature not known previously for this species. The lack of prior knowledge of neurotoxicity in this species is consistent with our results due to the bias in rodent studies and human bite reports, whilst this venom had a greater binding affinity toward amphibian and diapsid α-1 targets. The other large terrestrial species, D. acutus, did not display any meaningful levels of neurotoxicity. These results demonstrate that whilst small peptide neurotoxins are a basal trait of these snakes, it has been independently amplified on two separate occasions, once in Azemiops and again in Tropidolaemus, and with Calloselasma representing a third possible amplification of this trait. These results also point to broader sources of novel neuroactive peptides with the potential for use as lead compounds in drug design and discovery.


Assuntos
Evolução Molecular , Neurotoxinas/química , Receptores Nicotínicos/metabolismo , Venenos de Víboras/química , Proteínas de Anfíbios/metabolismo , Anfíbios , Animais , Aves , Venenos de Crotalídeos/química , Venenos de Crotalídeos/metabolismo , Humanos , Interferometria , Lagartos , Síndromes Neurotóxicas , Neurotoxinas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Roedores , Venenos de Víboras/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-31634575

RESUMO

Dispholidus typus and Thelotornis mossambicanus are closely related rear-fanged colubrid snakes that both possess strongly procoagulant venoms. However, despite similarities in overall venom biochemistry and resulting clinical manifestations, the underlying venom composition differs significantly between the two species. As a result, the only available antivenom-which is a monovalent antivenom for D. typus-has minimal cross reactivity with T. mossambicanus and is not a clinically viable option. It was hypothesised that this lack of cross reactivity is due to the additional large metalloprotease protein within T. mossambicanus venom, which may also be responsible for faster coagulation times. In this study, we found that T. mossambicanus venom is a more powerful activator of prothrombin than that of D. typus and that the SVMP transcripts from T. mossambicanus form a clade with those from D. typus. The sequences from D. typus and T. mossambicanus were highly similar in length, with the calculated molecular weights of the T. mossambicanus transcripts being significantly less than the molecular weights of some isoforms on the 1D SDS-PAGE gels. Analyses utilising degylcosylating enzymes revealed that T. mossambicanus SVMPs are glycosylated during post-translational modification, but that this does not lead to the different molecular weight bands observed in 1D SDS-PAGE gels. However, differences in glycosylation patterns may still explain some of the difference between the enzymatic activities and neutralization by antivenom that have been observed in these venoms. The results of this study provide new information regarding the treatment options for patients envenomated by T. mossambicanus as well as the evolution of these dangerous snakes.


Assuntos
Colubridae/fisiologia , Metaloproteases/metabolismo , Protrombina/metabolismo , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Animais , Colubridae/genética , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicosilação , Metaloproteases/genética , Filogenia , Protrombina/química , Protrombina/farmacologia , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 116(51): 25745-25755, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772017

RESUMO

Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.


Assuntos
Eutérios , Evolução Molecular , Genoma/genética , Musaranhos , Peçonhas/genética , Animais , Eutérios/classificação , Eutérios/genética , Eutérios/fisiologia , Duplicação Gênica , Masculino , Filogenia , Proteômica , Musaranhos/classificação , Musaranhos/genética , Musaranhos/fisiologia , Calicreínas Teciduais/genética
4.
Toxins (Basel) ; 11(10)2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623073

RESUMO

The binding of compounds to nicotinic acetylcholine receptors is of great interest in biomedical research. However, progress in this area is hampered by the lack of a high-throughput, cost-effective, and taxonomically flexible platform. Current methods are low-throughput, consume large quantities of sample, or are taxonomically limited in which targets can be tested. We describe a novel assay which utilizes a label-free bio-layer interferometry technology, in combination with adapted mimotope peptides, in order to measure ligand binding to the orthosteric site of nicotinic acetylcholine receptor alpha-subunits of diverse organisms. We validated the method by testing the evolutionary patterns of a generalist feeding species (Acanthophis antarcticus), a fish specialist species (Aipysurus laevis), and a snake specialist species (Ophiophagus hannah) for comparative binding to the orthosteric site of fish, amphibian, lizard, snake, bird, marsupial, and rodent alpha-1 nicotinic acetylcholine receptors. Binding patterns corresponded with diet, with the Acanthophis antarcticus not showing bias towards any particular lineage, while Aipysurus laevis showed selectivity for fish, and Ophiophagus hannah a selectivity for snake. To validate the biodiscovery potential of this method, we screened Acanthophis antarcticus and Tropidolaemus wagleri venom for binding to human alpha-1, alpha-2, alpha-3, alpha-4, alpha-5, alpha-6, alpha-7, alpha-9, and alpha-10. While A. antarcticus was broadly potent, T. wagleri showed very strong but selective binding, specifically to the alpha-1 target which would be evolutionarily selected for, as well as the alpha-5 target which is of major interest for drug design and development. Thus, we have shown that our novel method is broadly applicable for studies including evolutionary patterns of venom diversification, predicting potential neurotoxic effects in human envenomed patients, and searches for novel ligands of interest for laboratory tools and in drug design and development.


Assuntos
Receptores Nicotínicos/metabolismo , Venenos de Serpentes , Animais , Sítios de Ligação , Aves , Colubridae , Elapidae , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Lagartos , Marsupiais , Ophiophagus hannah , Peptídeos/metabolismo , Filogenia , Roedores , Especificidade da Espécie
5.
Toxicol Lett ; 316: 35-48, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31509773

RESUMO

Snake envenomation globally is attributed to an ever-increasing human population encroaching into snake territories. Responsible for many bites in Asia is the widespread genus Trimeresurus. While bites lead to haemorrhage, only a few species have had their venoms examined in detail. We found that Trimeresurus venom causes haemorrhaging by cleaving fibrinogen in a pseudo-procoagulation manner to produce weak, unstable, short-lived fibrin clots ultimately resulting in an overall anticoagulant effect due to fibrinogen depletion. The monovalent antivenom 'Thai Red Cross Green Pit Viper antivenin', varied in efficacy ranging from excellent neutralisation of T. albolabris venom through to T. gumprechti and T. mcgregori being poorly neutralised and T. hageni being unrecognised by the antivenom. While the results showing excellent neutralisation of some non-T. albolabris venoms (such as T. flavomaculaturs, T. fucatus, and T. macrops) needs to be confirmed with in vivo tests, conversely the antivenom failure T. hageni, and the very poor results against T. gumprechti and T. mcgregori, despite being conducted in the ideal scenario of preincubation of antivenom:venom, indicates that the likelihood of clinically relevant cross-reactivity for these species is low (T. gumprechti and T. mcgregori) to non-existent (T. hageni). These same latter three species were also not inhibited by the serine protease inhibitor AEBSF, suggesting that the toxins leading to a coagulotoxic effect in these species are non-serine proteases while in contrast T. albolabris coagulotoxicity was completely impeded by AEBSF, and thus driven by kallikrein-type serine proteases. There was a conspicuous lack of phylogenetic pattern in venom variation, with the most potent venoms (T. albolabris and T. hageni) being distant to each other on the organismal tree, and with the three most divergent and poorly neutralised venoms (T. gumprechti, T. hageni, and T. mcgregori) were also not each others closest relatives. This reinforces the paradigm that the fundamental dynamic evolution of venom results in organismal phylogeny being a poor predictor of venom potency or antivenom efficacy. This study provides a robust investigation on the differential venom effects from a wide range of Trimeresurus species on coagulation, highlighting differential fibrinogenolytic effects, while also investigating the relative antivenom neutralisation capabilities of the widely available Thai Red Cross Green Pit Viper antivenom. These results therefore have immediate, real-world implications for patients envenomed by Trimeresurus species.


Assuntos
Antídotos/farmacologia , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/antagonistas & inibidores , Hemorragia/tratamento farmacológico , Mordeduras de Serpentes/tratamento farmacológico , Trimeresurus , Animais , Testes de Coagulação Sanguínea , Reações Cruzadas , Venenos de Crotalídeos/classificação , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/metabolismo , Fibrinólise/efeitos dos fármacos , Hemorragia/sangue , Hemorragia/imunologia , Filogenia , Mordeduras de Serpentes/sangue , Mordeduras de Serpentes/imunologia , Trimeresurus/classificação
6.
Toxins (Basel) ; 11(7)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331004

RESUMO

The genus Bitis comprises 17 snake species that inhabit Africa and the Arabian Peninsula. They are responsible for a significant proportion of snakebites in the region. The venoms of the two independent lineages of giant Bitis (B. arietans and again in the common ancestor of the clade consisting of B. gabonica, B. nasicornis, B. parviocula and B. rhinoceros) induce an array of debilitating effects including anticoagulation, hemorrhagic shock and cytotoxicity, whilst the dwarf species B. atropos is known to have strong neurotoxic effects. However, the venom effects of the other species within the genus have not been explored in detail. A series of coagulation assays were implemented to assess the coagulotoxic venom effects of fourteen species within the genus. This study identified procoagulant venom as the ancestral condition, retained only by the basal dwarf species B. worthingtoni, suggesting anticoagulant venom is a derived trait within the Bitis genus and has been secondarily amplified on at least four occasions. A wide range of anticoagulant mechanisms were identified, such as coagulant and destructive activities upon fibrinogen in both giant and dwarf Bitis and the action of inhibiting the prothrombinase complex, which is present in a clade of dwarf Bitis. Antivenom studies revealed that while the procoagulant effects of B. worthingtoni were poorly neutralized, and thus a cause for concern, the differential mechanisms of anticoagulation in other species were all well neutralized. Thus, this study concludes there is a wide range of coagulotoxic mechanisms which have evolved within the Bitis genus and that clinical management strategies are limited for the procoagulant effects of B. worthingtoni, but that anticoagulant effects of other species are readily treated by the South African polyvalent antivenom. These results therefore have direct, real-work implications for the treatment of envenomed patients.


Assuntos
Anticoagulantes/toxicidade , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Coagulantes/toxicidade , Venenos de Víboras/toxicidade , Viperidae , Animais , Fibrinogênio/metabolismo , Humanos , Tromboelastografia , Tromboplastina/antagonistas & inibidores
7.
Artigo em Inglês | MEDLINE | ID: mdl-31306806

RESUMO

Snake bite is currently one of the most neglected tropical diseases affecting much of the developing world. Asian pit vipers are responsible for a considerable amount of envenomations annually and bites can cause a multitude of clinical complications resulting from coagulopathic and neuropathic effects. While intense research has been undertaken for some species of Asian pit viper, functional coagulopathic effects have been neglected for others. We investigated their effects upon the human clotting cascade using venoms of four species of Gloydius and Ovophis okinavensis, a species closely to Gloydius. All species of included within this investigation displayed varying fibrinogenolytic effects, resulting in a net anticoagulant outcome. Gloydius saxatilis and Gloydius ussuriensis displayed the most variable effects from differing localities, sampled from Russia and Korea. As this Gloydius investigation includes some geographical variation, notable results indicate key variations of these species that point to possible limitations in antivenom cross-reactivities, which may have implications for the clinical care of victims envenomed by these snakes.


Assuntos
Coagulação Sanguínea , Venenos de Crotalídeos/toxicidade , Mordeduras de Serpentes/sangue , Viperidae/metabolismo , Animais , Anticoagulantes/sangue , Humanos
8.
Toxicol In Vitro ; 58: 195-206, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30930232

RESUMO

Envenomations by Asian pitvipers can induce multiple clinical complications resulting from coagulopathic and neuropathic effects. While intense research has been undertaken for some species, functional coagulopathic effects have been neglected. As these species' venoms affect the blood coagulation cascade we investigated their effects upon the human clotting cascade using venoms of species from the Azemiops, Calloselasma, Deinagkistrodon and Hypnale genera. Calloselasma rhodostoma, Deinagkistrodon acutus, and Hypnale hypnale produced net anticoagulant effects through pseudo-procoagulant clotting of fibrinogen, resulting in weak, unstable, transient fibrin clots. Tropidolaemus wagleri was only weakly pseudo-procoagulant, clotting fibrinogen with only a negligible net anticoagulant effect. Azemiops feae and Tropidolaemus subannulatus did not affect clotting. This is the first study to examine in a phylogenetic context the coagulotoxic effects of related genera of basal Asiatic pit-vipers. The results reveal substantial variation between sister genera, providing crucial information about clinical effects and implications for antivenom cross-reactivity.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Venenos de Víboras/toxicidade , Viperidae , Animais , Fator Xa/metabolismo , Humanos , Filogenia , Plasminogênio/metabolismo , Protrombina/metabolismo , Tromboelastografia
9.
Toxicol In Vitro ; 58: 97-109, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30910521

RESUMO

Snakebite is a neglected tropical disease that disproportionately affects the poor. Antivenom is the only specific and effective treatment for snakebite, but its distribution is severely limited by several factors, including the prohibitive cost of some products. Papua New Guinea (PNG) is a snakebite hotspot but the high costs of Australian antivenoms (thousands of dollars per treatment) makes it unaffordable in PNG. A more economical taipan antivenom has recently been developed at the Instituto Clodomiro Picado (ICP) in Costa Rica for PNG and is currently undergoing clinical trials for the treatment of envenomations by coastal taipans (Oxyuranus scutellatus). In addition to potentially having the capacity to neutralise the effects of envenomations of non-PNG taipans, this antivenom may have the capacity to neutralise coagulotoxins in venom from closely related brown snakes (Pseudonaja spp.) also found in PNG. Consequently, we investigated the cross-reactivity of taipan antivenom across the venoms of all Oxyuranus and Pseudonaja species. In addition, to ascertain differences in venom biochemistry that influence variation in antivenom efficacy, we tested for relative cofactor dependence. We found that the new ICP taipan antivenom exhibited high selectivity for Oxyuranus venoms and only low to moderate cross-reactivity with any Pseudonaja venoms. Consistent with this genus level distinction in antivenom efficacy were fundamental differences in the venom biochemistry. Not only were the Pseudonaja venoms significantly more procoagulant, but they were also much less dependent upon the cofactors calcium and phospholipid. There was a strong correlation between antivenom efficacy, clotting time and cofactor dependence. This study sheds light on the structure-function relationships of the procoagulant toxins within these venoms and may have important clinical implications including for the design of next-generation antivenoms.


Assuntos
Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Venenos Elapídicos/toxicidade , Animais , Elapidae , Fator Xa/metabolismo , Feminino , Humanos , Masculino
10.
Toxicol In Vitro ; 55: 62-74, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30471431

RESUMO

Venom can affect any part of the body reachable via the bloodstream. Toxins which specifically act upon the coagulation cascade do so either by anticoagulant or procoagulant mechanisms. Here we investigated the coagulotoxic effects of six species within the medically important pit viper genus Protobothrops (Habu) from the Chinese mainland and Japanese islands, a genus known to produce hemorrhagic shock in envenomed patients. Differential coagulotoxicity was revealed: P. jerdonii and P. mangshanensis produced an overall net anticoagulant effect through the pseudo-procoagulant clotting of fibrinogen; P. flavoviridis and P. tokarensis exhibit a strong anticoagulant activity through the destructive cleavage of fibrinogen; and while P. elegans and P. mucrosquamatus both cleaved the A-alpha and B-beta chains of fibrinogen they did not exhibit strong anticoagulant activity. These variations in coagulant properties were congruent with phylogeny, with the closest relatives exhibiting similar venom effects in their action upon fibrinogen. Ancestral state reconstruction indicated that anticoagulation mediated by pseudo-procoagulant cleavage of fibrinogen is the basal state, while anticoagulation produced by destructive cleavage of fibrinogen is the derived state within this genus. This is the first in depth study of its kind highlighting extreme enzymatic variability, functional diversification and clotting diversification within one genus surrounding one target site, governed by variability in co-factor dependency. The documentation that the same net overall function, anticoagulation, is mediated by differential underlying mechanics suggests limited antivenom cross-reactivity, although this must be tested in future work. These results add to the body of knowledge necessary to inform clinical management of the envenomed patient.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Trimeresurus , Animais , Fator Xa/fisiologia , Fibrinogênio/fisiologia , Humanos , Trombina/fisiologia
11.
J Mol Evol ; 86(8): 531-545, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30206667

RESUMO

The Asian genus Boiga (Colubridae) is among the better studied non-front-fanged snake lineages, because their bites have minor, but noticeable, effects on humans. Furthermore, B. irregularis has gained worldwide notoriety for successfully invading Guam and other nearby islands with drastic impacts on the local bird populations. One of the factors thought to allow B. irregularis to become such a noxious pest is irditoxin, a dimeric neurotoxin composed of two three-finger toxins (3FTx) joined by a covalent bond between two newly evolved cysteines. Irditoxin is highly toxic to diapsid (birds and reptiles) prey, but roughly 1000 × less potent to synapsids (mammals). Venom plays an important role in the ecology of all species of Boiga, but it remains unknown if any species besides B. irregularis produce irditoxin-like dimeric toxins. In this study, we use transcriptomic analyses of venom glands from five species [B. cynodon, B. dendrophila dendrophila, B. d. gemmicincta, B. irregularis (Brisbane population), B. irregularis (Sulawesi population), B. nigriceps, B. trigonata] and proteomic analyses of B. d. dendrophila and a representative of the sister genus Toxicodryas blandingii to investigate the evolutionary history of 3FTx within Boiga and its close relative. We found that 92.5% of Boiga 3FTx belong to a single clade which we refer to as denmotoxin-like because of the close relation between these toxins and the monomeric denmotoxin according to phylogenetic, sequence clustering, and protein similarity network analyses. We show for the first time that species beyond B. irregularis secrete 3FTx with additional cysteines in the same position as both the A and B subunits of irditoxin. Transcripts with the characteristic mutations are found in B. d. dendrophila, B. d. gemmicincta, B. irregularis (Brisbane population), B. irregularis (Sulawesi population), and B. nigriceps. These results are confirmed by proteomic analyses that show direct evidence of dimerization within the venom of B. d. dendrophila, but not T. blandingii. Our results also suggest the possibility of novel dimeric toxins in other genera such as Telescopus and Trimorphodon. All together, this suggests that the origin of these peculiar 3FTx is far earlier than was appreciated and their evolutionary history has been complex.


Assuntos
Neurotoxinas/análise , Proteômica/métodos , Peçonhas/química , Animais , Colubridae , Guam , Neurotoxinas/metabolismo , Filogenia
12.
Artigo em Inglês | MEDLINE | ID: mdl-29758383

RESUMO

Night adders (Causus species within the Viperidae family) are amphibian specialists and a common source of snakebite in Africa. Some species are unique in that they have the longest venom glands of any viper, extending approximately 10% of the body length. Despite their potential medical importance and evolutionary novelty, their venom has received almost no research attention. In this study, venoms from a short-glanded species (C. lichtensteinii) and from a long-glanded species (C. rhombeatus) were compared using a series of proteomic and bioactivity testing techniques to investigate and compare the toxin composition and functioning of the venoms of these two species. Both C. rhombeatus and C. lichtensteinii were similar in overall venom composition and inhibition of blood coagulation through non-clotting proteolytic cleavage of fibrinogen. While the 1D gel profiles were very similar to each other in the toxin types present, 2D gel analyses revealed isoformic differences within each toxin classes. This variation was congruent with differential efficacy of South African Institute for Medical Research snake polyvalent antivenom, with C. lichtensteinii unaffected at the dose tested while C. rhombeatus was moderately but significantly neutralized. Despite the variation within toxin classes, the similarity in overall venom biochemistry suggests that the selection pressure for the evolution of long glands served to increase venom yield in order to subjugate proportionally large anurans as a unique form of niche partitioning, and is not linked to significant changes in venom function. These results not only contribute to the body of venom evolution knowledge but also highlight the limited clinical management outcomes for Causus envenomations.


Assuntos
Evolução Biológica , Glândulas Exócrinas/crescimento & desenvolvimento , Modelos Biológicos , Comportamento Predatório , Venenos de Víboras/metabolismo , Viperidae/crescimento & desenvolvimento , Animais , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia , Anticoagulantes/toxicidade , Coagulação Sanguínea/efeitos dos fármacos , Tamanho Corporal , Venenos Elapídicos/metabolismo , Venenos Elapídicos/farmacologia , Venenos Elapídicos/toxicidade , Elapidae , Eletroforese em Gel de Poliacrilamida , Glândulas Exócrinas/metabolismo , Fibrinogênio/metabolismo , Tamanho do Órgão , Filogenia , Proteólise/efeitos dos fármacos , Proteômica/métodos , Proteínas de Répteis/metabolismo , Especificidade da Espécie , Venenos de Víboras/farmacologia , Venenos de Víboras/toxicidade , Viperidae/fisiologia
13.
Toxicol Lett ; 288: 119-128, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462691

RESUMO

Atractaspis snake species are enigmatic in their natural history, and venom effects are correspondingly poorly described. Clinical reports are scarce but bites have been described as causing severe hypertension, profound local tissue damage leading to amputation, and deaths are on record. Clinical descriptions have largely concentrated upon tissue effects, and research efforts have focused upon the blood-pressure affecting sarafotoxins. However, coagulation disturbances suggestive of procoagulant functions have been reported in some clinical cases, yet this aspect has been uninvestigated. We used a suite of assays to investigate the coagulotoxic effects of venoms from six different Atractaspis specimens from central Africa. The procoagulant function of factor X activation was revealed, as was the pseudo-procoagulant function of direct cleavage of fibrinogen into weak clots. The relative neutralization efficacy of South African Antivenom Producer's antivenoms on Atractaspis venoms was boomslang>>>polyvalent>saw-scaled viper. While the boomslang antivenom was the most effective on Atractaspis venoms, the ability to neutralize the most potent Atractaspis species in this study was up to 4-6 times less effective than boomslang antivenom neutralizes boomslang venom. Therefore, while these results suggest cross-reactivity of boomslang antivenom with the unexpectedly potent coagulotoxic effects of Atractaspis venoms, a considerable amount of this rare antivenom may be needed. This report thus reveals potent venom actions upon blood coagulation that may lead to severe clinical effects with limited management strategies.


Assuntos
Aletinofídios , Antivenenos/farmacologia , Venenos de Abelha/farmacologia , Transtornos da Coagulação Sanguínea/prevenção & controle , Fator X/metabolismo , Fator Xa/efeitos dos fármacos , África Central , Animais , Especificidade de Anticorpos , Coagulação Sanguínea/efeitos dos fármacos , Transtornos da Coagulação Sanguínea/induzido quimicamente , Reações Cruzadas , Fibrinogênio/efeitos dos fármacos , Humanos , Técnicas In Vitro , Tromboelastografia
14.
Artigo em Inglês | MEDLINE | ID: mdl-29353015

RESUMO

Pseudechis (black snakes) is an Australasian elapid snake genus that inhabits much of mainland Australia, with two representatives confined to Papua New Guinea. The present study is the first to analyse the venom of all 9 described Pseudechis species (plus one undescribed species) to investigate the evolution of venom composition and functional activity. Proteomic results demonstrated that the typical Pseudechis venom profile is dominated by phospholipase A2 toxins. Strong cytotoxicity was the dominant function for most species. P. porphyriacus, the most basal member of the genus, also exhibited the most divergent venom composition, being the only species with appreciable amounts of procoagulant toxins. The relatively high presence of factor Xa recovered in P. porphyriacus venom may be related to a predominantly amphibian diet. Results of this study provide important insights to guide future ecological and toxinological investigations.


Assuntos
Venenos Elapídicos/metabolismo , Hydrophiidae/fisiologia , Modelos Moleculares , Proteínas de Répteis/metabolismo , Animais , Austrália , Coagulantes/química , Coagulantes/metabolismo , Coagulantes/toxicidade , Bases de Dados de Proteínas , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/toxicidade , Eletroforese em Gel de Poliacrilamida , Evolução Molecular , Hydrophiidae/crescimento & desenvolvimento , Conformação Molecular , Nova Guiné , Fosfolipases A2/química , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Fosfolipases A2/toxicidade , Filogenia , Proteômica/métodos , Proteínas de Répteis/química , Proteínas de Répteis/genética , Proteínas de Répteis/toxicidade , Especificidade da Espécie , Eletroforese em Gel Diferencial Bidimensional
15.
Toxins (Basel) ; 9(8)2017 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-28783084

RESUMO

While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds.


Assuntos
Lagartos , Peçonhas , Animais , Evolução Molecular , Íleo/efeitos dos fármacos , Íleo/fisiologia , Técnicas In Vitro , Calicreínas/química , Masculino , Microscopia Eletrônica de Varredura , Contração Muscular/efeitos dos fármacos , Fosfolipases A2/química , Filogenia , Proteômica , Ratos , Dente/ultraestrutura , Peçonhas/química , Peçonhas/genética , Peçonhas/toxicidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-28757215

RESUMO

A paradigm of venom research is adaptive evolution of toxins as part of a predator-prey chemical arms race. This study examined differential co-factor dependence, variations relative to dietary preference, and the impact upon relative neutralisation by antivenom of the procoagulant toxins in the venoms of a clade of Australian snakes. All genera were characterised by venoms rich in factor Xa which act upon endogenous prothrombin. Examination of toxin sequences revealed an extraordinary level of conservation, which indicates that adaptive evolution is not a feature of this toxin type. Consistent with this, the venoms did not display differences on the plasma of different taxa. Examination of the prothrombin target revealed endogenous blood proteins are under extreme negative selection pressure for diversification, this in turn puts a strong negative selection pressure upon the toxins as sequence diversification could result in a drift away from the target. Thus this study reveals that adaptive evolution is not a consistent feature in toxin evolution in cases where the target is under negative selection pressure for diversification. Consistent with this high level of toxin conservation, the antivenom showed extremely high-levels of cross-reactivity. There was however a strong statistical correlation between relative degree of phospholipid-dependence and clotting time, with the least dependent venoms producing faster clotting times than the other venoms even in the presence of phospholipid. The results of this study are not only of interest to evolutionary and ecological disciplines, but also have implications for clinical toxinology.


Assuntos
Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Venenos Elapídicos/toxicidade , Elapidae/fisiologia , Animais , Austrália , Elapidae/genética , Humanos , Filogenia
17.
Artigo em Inglês | MEDLINE | ID: mdl-28457945

RESUMO

Venom is a key evolutionary trait, as evidenced by its widespread convergent evolution across the animal kingdom. In an escalating prey-predator arms race, venoms evolve rapidly to guarantee predatory or defensive success. Variation in venom composition is ubiquitous among snakes. Here, we tested variation in venom activity on substrates relevant to blood coagulation among Pseudonaja (brown snake) species, Australian elapids responsible for the majority of medically important human envenomations in Australia. A functional approach was employed to elucidate interspecific variation in venom activity in all nine currently recognised species of Pseudonaja. Fluorometric enzymatic activity assays were performed to test variation in whole venom procoagulant activity among species. Analyses confirmed the previously documented ontogenetic shift from non-coagulopathic venom in juveniles to coagulopathic venom as adults, except for the case of P. modesta, which retains non-coagulopathic venom as an adult. These shifts in venom activity correlate with documented ontogenetic shifts in diet among brown snakes from specialisation on reptilian prey as juveniles (and throughout the life cycle of P. modesta), to a more generalised diet in adults that includes mammals. The results of this study bring to light findings relevant to both clinical and evolutionary toxinology.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Coagulantes/farmacologia , Venenos Elapídicos/farmacologia , Elapidae/fisiologia , Filogenia , Animais , Austrália , Fator VII/metabolismo , Fator Xa/metabolismo , Humanos , Análise dos Mínimos Quadrados , Comportamento Predatório , Protrombina/metabolismo , Especificidade da Espécie
18.
Toxins (Basel) ; 9(5)2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28534833

RESUMO

Venoms can deleteriously affect any physiological system reachable by the bloodstream, including directly interfering with the coagulation cascade. Such coagulopathic toxins may be anticoagulants or procoagulants. Snake venoms are unique in their use of procoagulant toxins for predatory purposes. The boomslang (Dispholidus typus) and the twig snakes (Thelotornis species) are iconic African snakes belonging to the family Colubridae. Both species produce strikingly similar lethal procoagulant pathologies. Despite these similarities, antivenom is only produced for treating bites by D. typus, and the mechanisms of action of both venoms have been understudied. In this study, we investigated the venom of D. typus and T. mossambicanus utilising a range of proteomic and bioactivity approaches, including determining the procoagulant properties of both venoms in relation to the human coagulation pathways. In doing so, we developed a novel procoagulant assay, utilising a Stago STA-R Max analyser, to accurately detect real time clotting in plasma at varying concentrations of venom. This approach was used to assess the clotting capabilities of the two venoms both with and without calcium and phospholipid co-factors. We found that T. mossambicanus produced a significantly stronger coagulation response compared to D. typus. Functional enzyme assays showed that T. mossambicanus also exhibited a higher metalloprotease and phospholipase activity but had a much lower serine protease activity relative to D. typus venom. The neutralising capability of the available boomslang antivenom was also investigated on both species, with it being 11.3 times more effective upon D. typus venom than T. mossambicanus. In addition to being a faster clotting venom, T. mossambicanus was revealed to be a much more complex venom composition than D. typus. This is consistent with patterns seen for other snakes with venom complexity linked to dietary complexity. Consistent with the external morphological differences in head shape between the two species, CT and MRI analyses revealed significant internal structural differences in skull architecture and venom gland anatomy. This study increases our understanding of not only the biodiscovery potential of these medically important species but also increases our knowledge of the pathological relationship between venom and the human coagulation cascade.


Assuntos
Colubridae , Venenos de Serpentes , Animais , Antivenenos/farmacologia , Evolução Biológica , Coagulação Sanguínea/efeitos dos fármacos , Colubridae/anatomia & histologia , Colubridae/genética , Colubridae/metabolismo , Glândulas Exócrinas/anatomia & histologia , Humanos , Calicreínas/metabolismo , Metaloproteases/metabolismo , Fosfolipases A2/metabolismo , Proteômica , Proteínas de Répteis/metabolismo , Crânio/anatomia & histologia , Venenos de Serpentes/metabolismo , Venenos de Serpentes/farmacologia
20.
Curr Biol ; 27(8): 1184-1191, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28366739

RESUMO

Venom systems have evolved on multiple occasions across the animal kingdom, and they can act as key adaptations to protect animals from predators [1]. Consequently, venomous animals serve as models for a rich source of mimicry types, as non-venomous species benefit from reductions in predation risk by mimicking the coloration, body shape, and/or movement of toxic counterparts [2-5]. The frequent evolution of such deceitful imitations provides notable examples of phenotypic convergence and are often invoked as classic exemplars of evolution by natural selection. Here, we investigate the evolution of fangs, venom, and mimetic relationships in reef fishes from the tribe Nemophini (fangblennies). Comparative morphological analyses reveal that enlarged canine teeth (fangs) originated at the base of the Nemophini radiation and have enabled a micropredatory feeding strategy in non-venomous Plagiotremus spp. Subsequently, the evolution of deep anterior grooves and their coupling to venom secretory tissue provide Meiacanthus spp. with toxic venom that they effectively employ for defense. We find that fangblenny venom contains a number of toxic components that have been independently recruited into other animal venoms, some of which cause toxicity via interactions with opioid receptors, and result in a multifunctional biochemical phenotype that exerts potent hypotensive effects. The evolution of fangblenny venom has seemingly led to phenotypic convergence via the formation of a diverse array of mimetic relationships that provide protective (Batesian mimicry) and predatory (aggressive mimicry) benefits to other fishes [2, 6]. Our results further our understanding of how novel morphological and biochemical adaptations stimulate ecological interactions in the natural world.


Assuntos
Evolução Biológica , Peixes/fisiologia , Comportamento Predatório , Peçonhas , Adaptação Fisiológica , Animais , Fenótipo , Pigmentação , Proteoma/análise , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...